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Appendix A Additional Definitions, Lemmas, and Proofs
for Section 3

A.1 Unit-sloped paths and Lemma A.1

Definition A.1 ((Recurring) unit-sloped path).
A unit-sloped path of length 2i is a path in R2 from (0, 0) to (2i, s2i) consisting only of
line segments between (k − 1, sk−1) and (k, sk) for k = 1, 2, . . . , 2i where sk = sk−1 + 1 or
sk = sk−1 − 1 and s0 = 0. A recurring unit-sloped path of length 2i is a unit-sloped path of
length 2i that ends in (2i, 0), i.e., it has s2i = 0. 4

Note that if we restrict sk ≥ 0 for all k = 0, 1, 2, . . . , 2i, this definition coincides with that of
the well-known Dyck path (see, e.g., Deutsch (1999), Deutsch and Shapiro (2001)). Figure
4 shows an example for a recurring unit-sloped path and a Dyck path, respectively.
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Figure 1: Recurring unit sloped paths. a) General path. and b) Dyck path.

Lemma A.1.

a) The number of recurring unit-sloped paths of length 2i which have sk ≥ 0 for all k =
0, 1, 2, . . . , 2i is Ci.

b) The number of recurring unit-sloped paths of length 2i which have sk ≥ −1 for all
k = 0, 1, 2, . . . , 2i is Ci+1.

Proof.

a) See Michaels and Rosen (1991), chapter 7, pages 115 and 116.

b) The proof is a straightforward consequence of the fact that the number of recurring
unit-sloped paths of length 2i with sk ≥ −1 for k = 0, 1, 2, . . . , 2i is the number of all
recurring unit-sloped paths of length 2i minus the number of all recurring unit-sloped
paths of length 2i which hit the number −2 at least once. As a result of the reflection
principle, counting the paths from (0, 0) to (2i, 0) hitting −2 at least once is the same
as counting the paths from (0, 0) to (2i,−4) hitting −2 at least once. But any such
path must hit −2 at some point, i.e., we are computing the total number of paths from
(0, 0) to (2k,−4). In total, we obtain that the number of recurring unit-sloped paths
of length 2i with sk ≥ −1 for k = 0, 1, 2, . . . , 2i is equal to the total number of paths
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from (0, 0) to (2i, 0) minus the total number of paths from (0, 0) to (2i,−4) which is
equal to(

2i

i

)
−
(

2i

i+ 2

)
=

(2i)!

(i!)2
− (2i)!

(i+ 2)!(i− 2)!
=

(2i)!

(i!)2

(
1− i(i− 1)

(i+ 1)(i+ 2)

)

=
(2i)!

(i!)2
(i+ 1)(i+ 2)− i(i− 1)

(i+ 1)(i+ 2)
=

(2i)!

(i!)2
4k + 2

(i+ 1)(i+ 2)

=
1

i+ 2

1

(i+ 1)!

(2i)!(4i+ 2)

i!
=

1

i+ 2

1

(i+ 1)!

(2i)!(4i+ 2)(i+ 1)

(i+ 1)!

=
1

i+ 2

1

(i+ 1)!

(2i)!(4i2 + 6i+ 2)

(i+ 1)!
=

1

i+ 2

1

(i+ 1)!

(2i)!(2i+ 1)(2i+ 2)

(i+ 1)!

=
1

i+ 2

(
2i+ 2

i+ 1

)
= Ci+1.

A.2 Lemma A.2

Lemma A.2.

a) The number an,k of unit-sloped paths of length 2n with sk′ ≥ −1 for all k′ = 0, 1, 2, . . . , 2n
which end at position (2n, 2k), i.e., at height 2k, is given by an,k = k+1

n+1

(
2n+2
n−k

)
.

b) The number of item sequences σ of length 2n without condensations where Bf[σ] = m
for m ∈ {n, n+ 1, . . . , 2n} is given by an,m−n.

Proof.

a) The proof is an immediate consequence of the bijection between Dyck paths of length
2n+2 and path pairs of length n given in Deutsch and Shaprio (2001) and the included
remark concerning the relaxation of the restriction of path pairs having to end in the
same point. To this end, we first modify the bijection by omitting the appended u-step
at the beginning and the appended d-step at the end of the Dyck path in order to
facilitate recurring unit-sloped paths that are allowed to hit the level of −1. Moreover,
since the number of path pairs of length n having endpoints k

√
2 apart is an,k, it follows

from the bijection that the number of unit-sloped paths ending at height 2k is an,k.
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b) A total number of m bins with m ∈ {n, n + 1, . . . , 2n} is obtained when in an item
sequence without condensations m− n out of the n pairs of successive items are pairs
of large items for which no matching small items can be found afterwards. Each
such item sequence corresponds to a unit-sloped path of length 2n with sk ≥ −1
for k = 0, 1, 2, . . . , 2n ending at height 2(m − n) because each pair of large items
contributes an amount of 2 to the total height achieved at the end of the path, and
the result follows.

A.3 Proof of Lemma 3.4

a) Since for 2n items at least n and at most 2n bins are needed, Bf(2n,m) = 0 for
m < n and m > 2n. For the remaining m, we perform a reverse induction on m.
The base case m = 2n is valid because the only item sequence which needs 2n bins

has 2n large items and it holds that
n∑

k=2n−n
an,k = an,n = n+1

n+1

(
2n+2

0

)
= 1. For the

inductive step, let Bf(2n,m) =
n∑

k=m−n
an,k be valid for some m with 2n ≥ m > n. We

show that Bf(2n,m − 1) =
n∑

k=m−1−n
an,k. Because of m > n, there must be a pair of

large items starting at an odd position for which no matching small items follow in
every item sequence with objective value m since otherwise these large items could be
matched with small items and would fit into a bin contradicting m > n. Hence, we
obtain for any item sequence with objective value m an item sequence with objective
value m − 1 by replacing the first pair of large items starting at an odd position for
which no matching small items follow with a pair of small items which in turn lead
to a condensation. As a result, we have Bf(2n,m − 1) = Bf(2n,m) + |Σadd| where
Σadd are the additional item sequences leading to objective value m − 1 which have
not resulted from establishing a condensation in an item sequence with objective value
m. These item sequences can be mapped to a unit-sloped path of length 2n not going
below level −1 and ending at height 2(m − 1 − n). From Lemma A.2, we have that
|Σadd| = an,m−n−1. Together with the induction hypothesis we conclude that

Bf(2n,m− 1) = Bf(2n,m) + |Σadd| =
n∑

k=m−n

an,k + an,m−n−1 =
n∑

k=m−n−1

an,k.

b) Since for 2n+1 items at least n+1 and at most 2n+1 bins are needed, Bf(2n+1,m) = 0
for m < n+ 1 and m > 2n+ 1. Notice that whenever m > n+ 1 for an item sequence
of length 2n + 1, we have m > n for the same item sequence where the last item is
deleted. Thus, there must be a pair of large items beginning at an odd position in the
truncated sequence from the same reasoning as in part a) of the proof. Objective value
m with n + 1 < m ≤ 2n + 1 for an item sequence of length 2n + 1 can be attained in
two ways: First, Bf needed m−1 bins after 2n items and the 2n+1st item leads to the
mth bin. Second, Bf needed m bins after 2n items and the 2n+1st item needs no new
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bin. In the first case, we have Bf(2n,m− 1) item sequences which must incur a new
bin upon appending a large item; appending a small item would leave the objective
value at m because there are at least two large items which could be matched with
the small item. In the second case, Bf(2n,m) item sequences will not incur a new bin
upon appending a small item as this item can be matched with one of the large items;
appending a large item would lead to objective value m+ 1 since after 2n items there
can never be a bin with a small item only. We obtain

Bf(2n+ 1,m) = Bf(2n,m− 1) + Bf(2n,m)

=
n∑

k=m−1−n

an,k +
n∑

k=m−n

an,k = 2
n∑

k=m−n

an,k + an,m−1−n.

Objective value n+ 1 can be attained in three ways: First, Bf needed n bins after 2n
items and the 2n + 1st item is large leading to the n + 1st bin. Second, Bf needed n
bins after 2n items and the 2n + 1st item is small leading to the n + 1st bin. Third,
Bf needed n+ 1 bins after 2n items and the 2n+ 1st item is small, but does not lead
to a new bin. The first case is trivial. In the second case, we seek for the same item
sequences because neither of them can exhibit a pair of large items starting in an odd
position. In the third case, we seek for the item sequences of length 2n with objective
value n + 1 which have at least one pair of large items beginning at an odd position
such that the appended small item does not incur a new bin. These item sequences
are counted by Bf(2n, n+ 1). We obtain

Bf(2n+ 1, n+ 1) = Bf(2n, n) + Bf(2n, n) + Bf(2n, n+ 1)

=
n∑

k=0

an,k +
n∑

k=0

an,k +
n∑

k=1

an,k = 3
n∑

k=0

an,k − an,0.

A.4 Proof of Theorem 3.5

a) We show by two-dimensional induction on n and m that
n∑

k=m−n
an,k =

(
2n+1
m+1

)
. Recall

that n = 1, 2, . . . and m = n, n + 1, . . . , 2n. The base case n = 1 and m = n = 1 is

valid because it holds that
1∑

k=0

a1,k = a1,0 + a1,1 = 2 + 1 = 3 =
(
2·1+1
1+1

)
=
(
3
2

)
= 3. In

the first inductive step (on n with fixed m = n), we show that
n∑

k=0

an,k =
(
2n+1
n+1

)
holds.

From Shapiro (1976), we know that 1
2

(
2(n+1)
n+1

)
=

n∑
k=0

an,k. The result follows from

1

2

(
2(n+ 1)

n+ 1

)
=

1

2

(2n+ 2)!

(n+ 1)!(n+ 1)!
=

(2n+ 2)(2n+ 1)!

2(n+ 1)n!(n+ 1)!
=

(
2n+ 1

n+ 1

)
.

In the second inductive step (on m with arbitrary n), we show that
n∑

k=m−n
an,k =

(
2n+1
m+1

)
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implies
n∑

k=m+1−n
an,k =

(
2n+1
m+2

)
. This can be seen by the following calculations:

n∑
k=m+1−n

an,k =
n∑

k=m−n

an,k − an,m−n =

(
2n+ 1

m+ 1

)
− m− n+ 1

n+ 1

(
2n+ 2

2n−m

)

=
(2n+ 1)!(n+ 1)(m+ 2)− (m− n+ 1)(2n+ 2)!

(2n−m)!(m+ 2)!(n+ 1)

=
(2n+ 1)!

(m+ 2)!(2n−m− 1)!

(n+ 1)(m+ 2)− (m− n+ 1)(2n+ 2)

(2n−m)(n+ 1)

=
(2n+ 1)!

(m+ 2)!(2n−m− 1)!
· 1 =

(
2n+ 1

m+ 2

)
.

The result now immediately follows from the formula given in part a) of Lemma 3.4.

b) For m = n+ 1, we have

3
n∑

k=0

an,k − an,0
a)
= 3

(
2n+ 1

n+ 1

)
− 1

n+ 1

(
2n+ 2

n

)
=

(2n+ 1)!

(n+ 2)!(n+ 1)!
(3n2 + 7n+ 4)

and (
2n+ 3

n+ 2

)
−
(

2n+ 1

n+ 1

)
=

(2n+ 1)!

(n+ 2)!(n+ 1)!
(3n2 + 7n+ 4).

which together yields the desired relation for m = n+ 1.

For n+ 1 < m ≤ 2n+ 1, we have

2
n∑

k=m−n

an,k + an,m−n−1
a)
= 2

(
2n+ 1

m+ 1

)
+
m− n
n+ 1

(
2n+ 2

2n−m+ 1

)

=
(2n+ 2)!

(m+ 1)!(2n−m+ 1)!

(
2(2n−m+ 1)

2n+ 2
+
m− n
n+ 1

)

=
(2n+ 2)!

(m+ 1)!(2n−m+ 1)!

(
2n+ 2

2n+ 2

)
=

(
2n+ 2

m+ 1

)
.

The result now immediately follows from the formula given in part b) of Lemma 3.4.
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A.5 Lemma A.3

Lemma A.3. For n ≤ m ≤ 2n it holds that
∑
i≥1

Ci

(
2n−2i
m−i

)
=
∑
i≥1

Ci−1
(
2n−2i+1
m−i+1

)
.

Proof. We show that
∑
i≥1

Ci

(
2n−2i
m−i

)
−
∑
i≥1

Ci−1
(
2n−2i+1
m−i+1

)
= 0. Notice that from the definition of

the binomial coefficient, i ranges in {1, 2, . . . , 2n−m} in both terms. Hence,∑
i≥1

Ci

(
2n− 2i

m− i

)
−
∑
i≥1

Ci−1

(
2n− 2i+ 1

m− i+ 1

)

= C1

(
2n− 2

m− 1

)
+ C2

(
2n− 4

m− 2

)
+ C3

(
2n− 6

m− 3

)
+ . . .+ C2n−m

(
2m− n
2m− n

)

−

(
C0

(
2n− 1

m

)
+ C1

(
2n− 3

m− 1

)
+ C2

(
2n− 5

m− 2

)
+ . . .+ C2n−m−1

(
2m− n+ 1

2m− n+ 1

))

= C1

(
2n− 3

m− 2

)
+ C2

(
2n− 5

m− 3

)
+ . . .+ C2n−m−1

(
2m− n+ 1

2m− 2n

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m−1∑

i=1

Ci

(
2n− 2i− 1

m− i− 1

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m−1∑

i=0

Ci

(
2n− 2i− 1

m− i− 1

)
−
(

2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=
2n−m∑
i=0

Ci

(
2n− 2i− 1

m− i− 1

)
− C2n−m

(
2m− 2n− 1

2m− 2n− 1

)
−
(

2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=
∑
i≥0

Ci

(
2n− 2i− 1

m− i− 1

)
− C2n−m −

(
2n− 1

m− 1

)
+ C2n−m −

(
2n− 1

m

)

=

(
2n

m

)
−
(

2n− 1

m− 1

)
−
(

2n− 1

m

)
=

(
2n

m

)
−
(

2n

m

)
= 0.
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A.6 Proof of Corollary 3.7

From Theorem 3.1, we know that Bf2[σ] ∈ {m,m − 1} whenever Bf[σ] = m; from the
previous Theorem 3.6, we know that |{σ | |σ| = n,Bf2[σ] = m− 1,Bf[σ] = m}| =

(
n

m+1

)
for

m = dn
2
e + 1, . . . , n − 1. Hence, from Theorem 3.5 it immediately follows for these m that

|{σ | |σ| = n,Bf2[σ] = m}| =
(
n+1
m+1

)
−
(

n
m+1

)
=
(
n
m

)
. Clearly, |{σ | |σ| = n,Bf[σ] = n}| =

|{σ | |σ| = n,Bf2[σ] = n}| = 1.

A.7 Proof of Corollary 3.10

a) For v < n and v ≥ 2n− 1, FBf(v) = FBf2(v). For n ≤ v < 2n− 1

FBf2(v)− FBf(v) =

( bvc∑
m=n

((
2n+1
m+2

)
− 2
(

2n
m+1

))
+
(

2n
n+1

))
· (2−2n)

=

( bvc∑
m=n

((
2n

m+2

)
−
(

2n
m+1

))
+
(

2n
n+1

))
· (2−2n) =

(
2n
bvc+2

)
· (2−2n) > 0.

The second part follows immediately from Pascal’s triangle as a result of
(

2n
v+2

)
>
(

2n
v+3

)
for v = n, n+ 1, . . . , 2n− 3.

b) Using the formula of Stirling (n! ≈
√

2πn(n
e
)n, KÃ¶nigsberger (2001)), we get for

n→∞ that

FBf2(n)− FBf(n) =

(
2n

n+ 2

)
· 2−2n ≈

√
4πn(2n

e
)2n√

2π(n+ 2)(n+2
e

)n+2
√

2π(n− 2)(n−2
e

)n−2
· 2−2n

=

√
n22nn2n√

π(n2 − 4)(n+ 2)n+2(n− 2)n−2
· 2−2n ∈ Θ(

1√
n

).

In addition,
(
2n
v

)
>
(

2n
v+1

)
for v ∈ N with v ≥ n, i.e., FBf2(v) − FBf(v) monotonously

decreases for v ≥ n. Since also FBf2(v) = FBf(v) for v < n and v ≥ 2n− 1, the result
follows.
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